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Properties unique in nuclei far from β stability line
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Abstract. Nucleons with very small binding energies present in nuclei far from the β stability line produce
a unique shell structure, which leads to the disappearance of traditional magic numbers or to the creation
of new magic numbers and new deformation regions. We study the shell structure in terms of the variation
of two important ingredients, the kinetic energy and the spin-orbit splitting, as a function of the orbital
angular momentum �, when binding energies of neutrons decrease towards zero. It is also shown that
for low-lying threshold strength, a negative sign is possible for the polarization charge coming from the
coupling of one-particle to isoscalar shape oscillations.

PACS. 21.10.Pc Single-particle levels and strength functions – 21.60.Ev Collective models

1 Introduction

Nuclei far from β stability lines are expected to show some
very interesting and exotic properties, due to a) the pres-
ence of nucleons with very small binding energy; b) the un-
conventional neutron/proton ratio for a given mass num-
ber; c) a large difference between the Fermi level of pro-
tons and that of neutrons. The presence of nucleons with
binding energies less than 8–10 MeV, which is the sepa-
ration energy typical of β stable nuclei, leads to unique
shell structure, the long tail of the density and potential,
low-lying threshold strength, larger width of giant reso-
nances, and unique polarization due to the coupling to
shape oscillations.

Available experimental information on 32
12Mg20, which

is a singly closed-shell nucleus in the traditional termi-
nology, indicates that the nucleus is deformed [1]. A new
magic number N = 16 near the neutron drip line is re-
cently suggested [2]. Furthermore, the dissipation of the
magic number N = 8 is reported [3] from the measure-
ment of low excitation energies of 2+ and 1− states and
the observed large B(E2) and B(E1) values in the nucleus
12
4 Be8 .

First we examine one-particle shell structure for a
given potential. In fig. 1 we plot one-particle energy eigen-
values for neutrons in Woods-Saxon potentials. The pa-
rameters of the potential in fig. 1a are those standard for β
stable nuclei [4]. In fig. 1b the diffuseness parameter is dou-
bled while all other parameters are the same as in fig. 1a.
From fig. 1a it is seen that around En� = −10 MeV, which
corresponds approximately to the Fermi level of β stable
nuclei, the neutron numbers N = 8 and 20 are magic num-
bers as is well known in β stable nuclei. In contrast, for
En� = −2 → 0 MeV the N = 8 magic number disappears,
while N = 16 becomes the new magic number. In the po-

tential of fig. 1b we see that for En� > −5 MeV the magic
numbers N = 8 and N = 20 disappear, while new magic
numbers, N = 16 and 34, are observed. The above change
of the magic numbers for En� = −10 → 0 MeV originates
from smaller values of |dEn�/dA| for smaller � orbitals as
|En�| becomes smaller. Indeed, for finite square-well po-
tentials one can analytically show that

dEn�

dA

∣∣∣∣
En�=0

=
{

0 , for � = 0 ,
finite , for � > 0 . (1)

The appearance of those new magic numbers should
be seen from Hartree-Fock (HF) calculations, in which
the one-body potential is obtained from the one-particle
density in the presence of occupied neutrons with small
binding energies. In fig. 2 an example of Skyrme HF cal-
culations of 22

6 C16 is shown. The possible presence of the
neutron magic number N = 16 for very small binding
energies is recognized, while the proton number Z = 16
obtained around −10 MeV does not correspond to any
large energy gap in the one-particle level structure. In the
same way the Skyrme HF calculation of 48

14Si34 indicates
the possible presence of the neutron magic number N = 34
for very small binding energies of neutrons.

One must carefully examine fig. 1 in order to recognize
any special variation of spin-orbit splittings for |En�| → 0.
This is because the mass number A is the variable in the
x-axis of fig. 1, while the distance of one-particle ener-
gies decreases as A becomes larger, approximately propor-
tional to A−1/3. In figs. 1 and 2 of ref. [5] the one-particle
level structure obtained from HF calculations is shown for
given mass numbers A = 120 and 110, by varying the
N/Z ratio from the proton to the neutron drip line. From
those figures it is clearly seen that, for a given mass num-
ber, the neutron spin-orbit splitting of smaller � orbitals
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Woods-Saxon potential with a=1.34 fm 
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Fig. 1. Energies of neutron orbits: (a) for the Woods-Saxon
potential with standard parameters [4]; (b) the same as (a)
except for a = 1.34 fm.

becomes smaller in contrast to that of larger � orbitals, as
the neutron binding energies approach zero.

The one-particle operator, of which the expectation
value gives kinetic energy in our prescription, is in fact
the same as the particle-vibration coupling operator to
shape oscillations. Thus, diagonal and non-diagonal ma-
trix elements of the operator are proportional to the po-
larization charge. The polarization charge related to parti-
cles with very small binding energies may have a behavior
unexpected from our common sense in the study of β sta-
ble nuclei. As an example we show that the polarization
charge of E2 excitations of loosely bound particles to the
continuum can be negative.

In sects. 2 and 3 the behavior of two important ingre-
dients of the nuclear shell structure, kinetic energy and
spin-orbit splitting, is studied [6] as a function of the or-
bital angular momentum � and of binding energies, when
neutron binding energies decrease towards zero. In sect. 4
we illustrate an unexpected negative sign of the polariza-
tion charge of E2 transitions coming from the coupling
of particles near threshold to shape oscillations. In sect. 5
conclusions are given.
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Fig. 2. HF potentials and one-particle levels of 22
6 C16. Neu-

trons on the r.h.s. and protons on the l.h.s. VN(r) expresses
the neutron nuclear potential, while VP(r) and VC(r) denote
the proton nuclear potential and the Coulomb potential, re-
spectively. The notation (n�j)res expresses the calculated one-
particle resonant levels for the HF potential. Occupied levels
are indicated by full lines, while unoccupied levels are denoted
by broken lines.

2 One-particle kinetic energy

One-particle eigenenergy εν is the sum of the positive ki-
netic and negative potential energy:

εν = 〈ν|T |ν〉 + 〈ν|V (r)|ν〉 . (2)

For bound states, εν < 0, the absolute magnitude of the
potential energy 〈V 〉 which is negative, is larger than the
kinetic energy 〈T 〉. In the case of larger � orbitals |〈V 〉|
becomes smaller while 〈T 〉 gets larger, as |εν | → 0. In con-
trast, for smaller � orbitals 〈T 〉 does not become larger as
|εν | → 0, since one-particle wave functions can extend be-
yond the potential due to lower centrifugal barriers. Con-
sequently, the second derivative of one-particle wave func-
tions by the radial coordinate (namely the kinetic energy)
may decrease. As a result of it, |εν | of smaller � orbitals ap-
proaches zero very slowly. In the following we demonstrate
this situation.

The one-body potential in nuclei is written as

V (r) = U(r) + V�s(r) + VC(r) . (3)

The expectation value of the kinetic energy is calculated
for simple potentials U(r): infinite square-well potential,
finite square-well potential and Woods-Saxon potential.
Using eigenfunctions with quantum numbers (n�) in the
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Fig. 3. Expectation values of (6), which are proportional to the
kinetic energy of the respective one-particle orbitals, as a func-
tion of (1+(En�/U0)). For U0 = 50 MeV, (1+(En�/U0)) = 0.8
and 1.0 mean En� = −10 and 0 MeV, respectively. Figures
are taken from ref. [6]. (a) For the square-well potential with
U0 = 50 MeV. For the infinite square-well potential, the thin
straight line is common for all orbitals with various (n, �) val-
ues. (b) For the Woods-Saxon potential with standard param-
eters.

absence of the Coulomb and spin-orbit potential

(T + U(r)) |n�〉 = En� |n�〉 , (4)

the expectation value of the kinetic energy can be written
as

〈n� |T |n� 〉 =
1
2

〈
n�

∣∣∣∣r dU(r)
dr

∣∣∣∣ n�

〉
, (5)

due to the virial theorem. The r.h.s. expression of (5) is
especially useful when the kinetic energy is later compared
with the spin-orbit splitting.

We write the kinetic energy in the form of (5), which is
expressed in terms of the radial derivative of the one-body
potential. It is interesting to note that diagonal and non-
diagonal matrix elements of the same operator, r dU(r)

dr ,
express the coupling to shape oscillations and thus are
proportional to the polarization charge.

In fig. 3 the expectation values of the operator

r

U0

dU(r)
dr

(6)

for neutrons are shown for an infinite square-well po-
tential, a finite square-well potential with depth U0 =
50 MeV, and the Woods-Saxon potential with standard
parameters [4] with U0 = 50 MeV, N = Z and v�s = 0,
as a function of (1 + (En�/U0)). For U0 = 50 MeV
(1+(En�/U0)) = 0.8 and 1.0 mean En� = −10 and 0 MeV,
respectively.

Since our potential U(r) has a finite range, the contri-
bution to the one-particle expectation value of (6) comes
from the part of one-particle wave functions inside the
range. In the infinite square-well potential (U0 → ∞), the
kinetic energy is equal to U0 +En� and, thus, the expecta-
tion values of (6) multiplied by U0 are given by 2(U0+En�)
for all orbitals independent of (n, �) values. We note that in
this potential, one-particle wave functions cannot extend
to the outside of the potential and, thus, the reduction in
the increasing rate of the kinetic energy never occurs as
(1 + (En�/U0)) increases. For finite square-well potentials
the probability for one particle to stay inside the potential
in the limit of zero binding energy can be analytically cal-
culated and is equal to 0, 0.33 and 0.60 for � = 0, 1 and 2,
respectively [7]. The extension of one-particle wave func-
tions with smaller � values to the outside of the potential
is the origin of the decrease of the kinetic energy as well
as of the spin-orbit splitting, when the binding energies
become smaller.

The vertical dotted line in fig. 3 at (1 + (En�/U0)) =
0.8, namely En� = −10 MeV for U0 = 50 MeV, indicates
the approximate Fermi level of β stable nuclei. When the
eigenvalue En� → 0 exists for the potential with a finite
range, the expectation value of (6) for (n, � = 0) orbitals
in the finite-well potential, approaches zero, since, due to
the absence of centrifugal barrier, the � = 0 neutron wave
functions can extend up to infinity. For the finite square-
well potential the expectation value of (6) at En� = 0 is
independent of n and is equal to 2/3, 6/5 and 10/7, for the
� = 1, 2 and 3 orbitals, respectively [8]. The expectation
value for Woods-Saxon potentials depends on the radial
node n.

From fig. 3 it is seen that a considerable deviation from
the straight line occurs first at smaller values of |En�| for
a less diffuse potential and for larger � orbitals. As seen
in fig. 3a, for the square-well potential the kinetic energy
starts to decrease first at very small binding energies, even
for � = 0 orbitals.

3 Spin-orbit splitting

The spin-orbit potential in (3) is written as

V�s(r) = c (�� · s) 1
r

dU(r)
dr

, (7)

where c is a constant which is usually determined in a
phenomenological way. Thus, using eigenfunctions |n�〉 in
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Fig. 4. Expectation values of the operator (9), which are
proportional to the spin-orbit splitting of the � orbital when
multiplied by (2� + 1), as a function of (1 + (En�/U0)). Fig-
ures are taken from ref. [6]. (a) For square-well potential with
U0 = 50 MeV. The thin curves express those corresponding
to infinite square-well potential, which are normalized so as to
coincide at (1 + (En�/U0)) = 0.8 with those of the same quan-
tum numbers (n�) for the finite square-well potential. (b) For
the Woods-Saxon potential with standard parameters.

eq. (4), namely treating V�s(r) by perturbation, one ob-
tains

spin-orbit splitting ∝ (2� + 1)
〈

n�

∣∣∣∣1r
dU(r)

dr

∣∣∣∣ n�

〉
. (8)

In fig. 4 the expectation values of the operator

1
r U0

dU(r)
dr

(9)

for neutrons are shown for the same simple potentials as
those used in sect. 2. The thin curves in fig. 4a are esti-
mated for the infinite square-well potential, normalizing
the curve at (1+(En�/U0)) = 0.8 so that it coincides with
the corresponding curve for the finite square-well poten-
tial. See ref. [6] for details. Our purpose is to compare the

result of finite potentials with that of the infinite poten-
tial, in order to see the effect of the presence of a surface.
It is seen that only in the region of (1 + (En�/U0)) > 0.8
the curve for the finite square-well potential differs appre-
ciably from that for the infinite square-well potential. For
potentials with a diffuse surface the expectation values of
(9) start to decrease at smaller values of (1 + (En�/U0)),
as seen from the comparison between figs. 4a and 4b. The
decrease is more appreciable for orbitals with smaller �
values.

The plotted quantity in fig. 4 times (2� + 1) is propor-
tional to the spin-orbit splitting. For a given En� value
the spin-orbit splitting for the 1p orbitals is much larger
than that for the 2p orbital, since the former belongs to
lighter nuclei. The variation of spin-orbit splitting of or-
bitals with a given � for En� = −10 → 0 MeV depends
moderately on the radial node n.

The extension of one-particle wave functions with
smaller � values to the outside of the potential is the origin
of the decrease of spin-orbit splitting when the binding en-
ergies become smaller, as in the case of the kinetic energy
described in sect. 2. Due to the different r-dependence in
(6) and (9), the effect of the diffuse surface on the kinetic
energy starts to appear already at deeper bound orbitals
compared with the spin-orbit splitting.

4 Coupling of particles near threshold to
shape oscillations

The λ-pole polarization charge coming from the coupling
to λ-pole isoscalar (IS) shape oscillations is written as [9]

(epol)λ, τ≈0 =

〈j2|R dV (r)
dr |j1〉

〈j2|rλ|j1〉
3
4π

ZeRλ

Cλ

(h̄ωλ)2

(h̄ωλ)2 − (E2 − E1)2
, (10)

where the nuclear radius is expressed by R and the form
factor of shape oscillations by RdV

dr , the matrix elements
of which are almost the same as those of r dV

dr . In fact,
the form factor RdV

dr or r dV
dr may be used also for isovec-

tor (IV) modes in an approximation. The last factor in
eq. (10) is close to unity, when either static polariza-
tion (E2 = E1) or coupling to giant resonances (h̄ωλ �
|E2−E1|) is considered. Then, the sign of the polarization
charge in (10) is given by that of the ratio

〈j2|R dV (r)
dr |j1〉

〈j2|rλ|j1〉 . (11)

The form factor RdV
dr is surface peaked for any rea-

sonable nuclear potential, and the major contribution to
〈rλ〉 comes also from the surface region if relevant par-
ticle orbitals j1 and j2 are sufficiently well bound. Thus,
for the harmonic-oscillator model or for well-bound par-
ticles, which have been traditionally studied in β stable
nuclei, the sign of the ratio (11) is always positive. This
positive sign leads to the result (epol)λ, τ≈0 > 0, namely
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Fig. 5. r.h.s.: d3/2 neutron radial wave functions. For (a)-(c) dashed curves show ϕd3/2(r) calculated at E = +1 MeV. Solid
curves denote φ1d3/2(r) calculated at E = −2.27, −9.91 and −20.94 MeV for (a), (b) and (c), respectively, which are eigenenergies
of the respective Woods-Saxon potentials shown by solid curves on the l.h.s. figures. The radius of the respective potentials is
indicated by R. l.h.s.: Woods-Saxon potentials V (r), −R(dV (r)/dr) and the product ϕd3/2(r)φ1d3/2(r). Energies of the (d3/2)
and (1d3/2) states are denoted in the respective figures.
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the fact [9] that the attractive coupling to IS shape os-
cillations produces an increase of the low-lying transition
strength which is proportional to |〈j2|rλ|j1〉|2.

Using the analytic expressions with the square-well
potential, in ref. [8], we have examined the polarization
charge of particles with very small binding energies. It
is shown that the quadrupole polarization charge coming
from the coupling of particles with � to the IS quadrupole
shape oscillations becomes

(epol)λ=2, τ≈0 → 0 , for � = 0 and 1 (12)

and

(epol)λ=2, τ≈0 > 0 , for � ≥ 2 (13)

in the limit of zero binding energies of the particles.
In the excitation of a bound particle with quantum

numbers (nh�h) to a continuum particle state with en-
ergy Ec and orbital angular momentum �c, the analytic
expression of the ratio

〈�c|R dV (r)
dr |nh�h〉

〈�c|r2|nh�h〉 , (14)

for the square-well potential is given in ref. [8]. We have
concluded: a) For small values of ph excitation energies
(namely, both the particle energy in the continuum and
the separation energy of the (nh�h) bound particle are
small), the sign of the ratio (14) can be negative when
the separation energy of the least-bound one-particle or-
bital with �c, which is an eigenstate of the potential, is
small. For example, the sign is always negative for very
low-energy ph excitations with �h = �c. b) When the sep-
aration energy of the least-bound one-particle with �c be-
comes larger than a certain value, which is about −10 MeV
for the Woods-Saxon potential with standard parameters,
the sign becomes positive even for small values of particle
energy in the continuum. Then, the sign of the ratio (14)
is positive even for small values of ph excitation energies.

Taking the excitation of one particle in the 1d3/2

orbital, which is the eigenstate of respective Woods-Saxon
potentials, to the continuum d3/2 orbital at +1 MeV,
in fig. 5 we illustrate the dependence of the sign of
the factor (14) on the eigenenergy of the 1d3/2 orbital;
(a) −2.27 MeV, (b) −9.91 MeV and (c) −20.94 MeV. Pa-
rameters of the Woods-Saxon potential are those standard
ones [4]. The only parameter which is different in (a)-(c) is
the radius, R, (or mass number) so that the 1d3/2 orbital
is the eigenmode with respective binding energies. On the
r.h.s. radial wave functions, ϕd3/2(r) and φ1d3/2(r), are
shown, while on the l.h.s. the product ϕd3/2(r)φ1d3/2(r)
is shown together with the respective Woods-Saxon
potentials, V (r), and −R(dV (r)/dr). We note that the
sign of the r2 matrix element is always the same as that
of ϕd3/2(r)φ1d3/2(r) outside the nucleus. Thus, in the case
of (a) the factor (14) is negative, while in (c) it is posi-
tive. In the case of (b) the matrix element of R(dV (r)/dr)

almost vanishes. It is seen that in β stable nuclei, in which
the separation energy of neutrons is about 8–10 MeV, the
sign of the factor (14) is always positive. In contrast, for
the low-lying threshold strength in nuclei towards the neu-
tron drip line the sign can be negative [8], as seen from
the example in fig. 5(a).

5 Conclusions

When one-particle energies vary as En� = −10 → 0 MeV,
we have shown that a) both the kinetic energy and spin-
orbit splitting decrease more strongly for small � orbitals;
b) the decrease is stronger for more diffuse potentials;
c) the kinetic energy is more sensitive to the diffuse surface
of potentials than the spin-orbit splitting. The variation
of both the kinetic energy and the spin-orbit splitting is
certainly playing an important role in the observation that
around the neutron drip line the traditional magic num-
bers N = 8 and 20 disappear while the new magic number
N = 16 appears. In shell model calculations of drip line
nuclei one has to take properly into account those basic
elements in the change of shell structure.

It is concluded that the IS (IV) strength in the energy
region just above the low-lying threshold strength, which
is created by exciting particles with small binding ener-
gies to the continuum in nuclei far from β stability lines,
can be reduced (increased) by the attractive (repulsive)
coupling to IS (IV) shape oscillations. This is in contrast
to the well-known fact that in β stable nuclei low-lying
IS (IV) particle-hole strengths are increased (reduced) by
the attractive (repulsive) IS (IV) coupling.

I would like to express my sincere thanks to professor M. Ishi-
hara for his inspiring discussions and continuous encourage-
ments, which I have received since our student days.
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